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Abstract 

A small modification to the interactive convergence clock synchroniza- 
tion algorithm allows it to tolerate a larger number of simple faults than 
the standard algorithm, without reducing its ability to tolerate arbitrary or 
“Byzantine” faults. Because the extended case-analysis required by the new 
fault model complicates the already intricate argument for correctness of the 
algorithm, it has been subjected to mechanically-checked formal verification. 

The fault model examined is similar to the “hybrid” one previously used 
for the problem of distributed consensus: in addition to  arbitrary faults, we 
also admit symmetric (Le., consistent) and manifest (i.e., detectable) faults. 
With n processors, the modified algorithm can withstand a arbitrary, s 
symmetric, and m manifest faults simultaneously, provided n > 3a + 29 + m. 
A further extension to the fault model includes link faults with bound n > 
3a + 2s + m + 1 where 1 is the maximum, over all pairs of processors, of the 
number of processors that have faulty links to one or other of the pair. 

The mechanically-checked formal verification of the modified algorithm 
was achieved by extending one for the classical Interactive Convergence al- 
gorithm, and was accomplished relatively easily. A mechanically-checked 
formal specification and verification is a reusable intellectual resource whose 
initial cost is amply repaid by the support it provides for inexpensive and 
reliable investigation of modified assumptions and algorithms such as those 
reported here. 
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Chapter 1 

Introduction 

Fault-tolerant architectures for digital flight control in civil aircraft provide 
the context for the work described here. These architectures generally use 
relatively few processors (from four to nine) and a topic of major practical 
concern is the development of fault-tolerant algorithms that can withstand 
as many kinds and as large a number of faults as possible within a given 
level of redundancy. Byzantine-fault-tolerant algorithms are attractive in 
this context because they can withstand any kind of fault, but they require 
a great deal of redundancy and can be overwhelmed by relatively few faults, 
even if the faults are of a simple kind that could be tolerated by other 
algorithms. 

An interesting line of investigation, therefore, is to seek algorithms t h a t  
can tolerate faults of many different kinds, and that “use up” redundancy 
according to the severity of the faults that actually arrive. Among t h e  ear- 
liest algorithms of this type was one by Perry and Toueg for distributed 
consensus under combinations of processor and communication faults [ 161. 
Extending such algorithms to  tolerate truly arbitrary (Byzantine) faults is 
difficult because the possibility that a fault may display asymmetric s y m p  
toms complicates the treatment of all faults. A complementary approach is 
to start with Byzantine-fault-tolerant algorithms and then try to improve 
their treatment of simpler fault modes. Meyer and Pradhan [12] and Caray 
and Perry [3] have developed fault models and algorithms of this kind by 
adding crash faults to the classical Byzantine model. Thambidurai and 
Park [23] propose a more elaborate hybrid fault model: they widen the 
notion of crash faults to include any fault that produces manifest (i.e., de- 
tectable) symptoms, and they allow symmetric faults (i.e., those that exhibit 
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2 Chapter 1. Introduction 

incorrect but consistent behavior) in addition to Byzantine faults. Tham- 
bidurai and Park present a modification to the Oral Messages algorithm of 
Lamport, Pease and Shostak [7] that achieves consensus under their fault 
model; this algorithm is employed in the MAFT (“Multicomputer Architec- 
ture for Fault Tolerance”) system for flight-control applications [5]. Unfor- 
tunately, the algorithm and its proof of correctness are flawed (though its 
implementation in MAFT is not). The flaw was detected through a failed 
attempt at formal verification by Lincoln and Rushby, who then developed 
a corrected algorithm [lo], and a mechanically-checked formal verification 
of its correctness [8,9]. 

All the works cited above deal with consensus; clock synchronization 
in the presence of multiple fault modes has received less attention. Infis 
and Moore [4] argue that the incidence of truly Byzantine (i.e., asymmet- 
ric) faults can be reduced to  a very low level by suitable hardware design, 
and they present a synchronization algorithm that withstands t “all-but- 
Byzantine” faults with only 2t + 1 processors (Byzantine fault-tolerant syn- 
chronization requires 3t 4- 1 processors). Garay and Perry [3] state that 
they have algorithms for clock synchronization under their “Byzantine plus 
crashes” fault model, but they do not describe them. 

In this report, I consider the problem of clock synchronization under a 
fault model similar to  that introduced for consensus by Thambidurai and 
Park. I show that a slightly modified version of the classical Interactive 
Convergence algorithm of Lamport and Melliar-Smith is able to  tolerate 
a arbitrary, s symmetric, and m manifest faults simultaneously, provided 
n > 3a + 2s + m. I also present an extension to  the fault model that admits 
a type of (intermittent) link fault and show that these are no more expensive 
to tolerate than manifest faults. 

Algorithms such as this are intended to  support safety-critical appli- 
cations, so strong assurance is required for their correctness. Unfortu- 
nately, there is evidence that the traditional processes of informal proof 
and peer review do not always provide this assurance reliably. For exam- 
ple, as noted above, the first published algorithm for consensus under a 
hybrid fault model was incorrect; the error was detected and corrected with 
the aid of mechanically-checked formal verification. In other cases, the al- 
gorithms have been correct, but the proofs that support that claim have 
been flawed, and some of the underlying assumptions have been incom- 
pletely or improperly characterized. For example, the interactive conver- 
gence clock synchronization algorithm of Lamport and Melliar-Smith, which 
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provides the foundation for the algorithm examined here, was published with 
a proof of correctness supported by five lemmas [6]. Formal verification of 
this argument by Rushby and von Henke revealed that the proofs of the 
main theorem and of all but one of the lemmas are flawed [17,18]. Nu- 
merous Byzantine-fault-tolerant clock synchronization algorithms have ap- 
peared since those of Lamport and Melliar-Smith; Schneider presents a uni- 
form treatment that includes almost all the known algorithms [20]. Shankar 
constructed a mechanically-checked formal verification of Schneider’s argu- 
ment and, again, several small errors were detected 121,221. (Schneider and 
Shankar are preparing a corrected treatment for publication.) 

These deficiencies in proofs of distributed algorithms for consensus and 
clock synchronization were all discovered and corrected with the aid of mech- 
anized verification systems. The proofs concerned are not mathematically 
deep, but they involve rather intricate arguments, considerable case andy- 
sis, and many delicate assumptions-characteristics that particularly favor 
the painstaking bookkeeping of mechanized verification. 

The algorithm presented here has been subjected to mechanized verifica- 
tion using the EHDM system.l Because the algorithm is a variation on Inter- 
active Convergence-which had already been analyzed using EHDM [17,18]- 
development of its formal specification and verification was not particularly 
difficult or time-consuming. The support provided for reliable and inex- 
pensive investigation of modifications to algorithms is an inadequately rec- 
ognized benefit of formal verification. In the present case, formal verifica- 
tion was instrumental in developing an algorithm for clock synchronization 
which, among all those suitable for architectures of the kind used in digital 
flight-control applications, seems to provide the most robust fault tolerance 
for a given level of redundancy. 

The fault model, the modified algorithm, and its analysis are presented 
in the next chapter. The mechanically-checked formal verification of the 
algorithm is described in Chapter 3. Conclusions are presented in the final 
Chapter. 

EHDM [19] is a verification system constructed at SRI whose distribution is controlled 
by the US Government. PVS [14] is a system of similar capabilities that is freely available 
from SRI-by anonymous ftp from f tp. csl . sri . com/pub/pvs or by World Wide Web 
from http://wwo.csl.sri.com/eri-csl-pvs.htr1. 



Chapter 2 

The Algorithm and Its 
Analysis 

The starting point for the algorithm developed here is the Interactive Con- 
vergence Algorithm (ICA) of Lamport and Melliar-Smith. To indicate the 
modifications made to accommodate a hybrid fault model, it is necessary to 
present a few elements from the formal treatment of the classical algorithm; 
for brevity, I omit many details (including the definitions of good clocks 
and nonfaulty processors). The notation, terminology, and the naming and 
numbering of assumptions and lemmas are those introduced by Lamport 
and Melliar-Smith [6]; however the statements of assumptions, lemmas, and 
constraints are from our corrected treatment [17,18] which, among other 
changes, eliminates the approximations used by Lamport and Melliar-Smith. 

2.1 The Interactive Convergence Algorithm 

Two notions of time are distinguished: clock time is the internal estimate of 
time that a processor obtains from its clock, while real time is an external, 
abstract notion of time that provides a common frame of reference. Upper 
case Latin and Greek letters are used for clock time quantities, lower case 
for real time. 

The goal of ICA is to maintain the clocks of redundant processors within 
some bounded skew 6 of each other: that is to say, the real time difference 
between the instant when the clock of processor p reads T and that when 
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6 Chapter 2. The Algorithm and Its Analysis 

the clock of processor q reads T must be less than 6. All processors have 
reasonably accurate clocks with a maximum rate of drift from real time given 
by p, and are synchronized within some bound 60 initially. Each processor 
engages in the synchronization protocol every R seconds, and for a duration 
of S seconds, according to its own clock. During synchronization, each 
processor determines the differences between its own clock and those of other 
processors, forms a “fault-tolerant average” of those differences, and adjusts 
its own clock by that amount. Processors may not be able to determine 
the differences between their clocks with absolute accuracy: the quantity E 

bounds the error in A$$, which denotes the difference between the clocks 
of processors q and p ,  as determined by p during its ith resynchronization. 
The key to  making a clock synchronization algorithm resistant to Byzantine 
failures among its components is the use of a “fault-tolerant average” in the 
adjustment step [20]. ICA is characterized by use of the egocentric mean 
as its fault-tolerant averaging function. To compute the egocentric mean, a 
processor replaces all differences AfJ larger than a fixed quantity A by zero, 
and then calculates the arithmetic mean of the resulting set of differences. 

To formalize this description, clocks are modeled as functions from clock 
to real time: c J T )  denotes the real time at  which processor p’s physical 
clock reads T .  Clocks are adjusted by subtracting a correction from their 
readings; the correction for processor p in the ith R-second period is denoted 
Ct), and 

cF)(T) = cp(T + Ct)) 

is defined as the logical clock for p during period i .  The ith period is denoted 
R(’) and runs from clock time T(’) to T(’+’), where T(’) = To + iR ( i  2 0 )  
and To is an arbitrary constant. Synchronization takes place during the last 
S seconds of each period; S(’) denotes the interval [T(’+’) - S, T(’+l)] .  

The 
first says that the skew between the clocks of nonfaulty processors must 
be bounded (i.e., the algorithm must maintain synchronization). 
Clock Synchronization Condition S1: For all processors p and q, if all 
but at most t processors (out of n) are nonfaulty through period i and if p 
and q are nonfaulty through period i, then for all T in R(’) 

ICA is required to maintain two conditions called S 1  and S2. 

The other condition, S2, which is ignored here, says that corrections must 
be bounded (this is needed to eliminate trivial solutions). 
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ICA requires that the processors start off with their clocks approximately 
synchronized, and that each nonfaulty processor can read the difference be- 
tween its own clock and that of another nonfaulty processor with a bounded 
error. Any implementation of the algorithm must satisfy these two assump- 
tions which, for historical reasons, are called A0 and A2. For brevity, A0 
is ignored here. Note that in order to read clock differences, the processors 
may already need to be synchronized, so S1 and S2 are required to hold in 
A2. 
Assumption A2: If conditions S1 and S2 hold for the i’th period, and 
processor p is nonfaulty through period i ,  then for each other processor q ,  p 
obtains Q value At; during the synchronization period S(’). If p = q,  then 
At; = 0; otherwise, if q is also nonfaulty through period i ,  then /Atdl 5 S 
and 

/c!)(Z“ + At;) - c!)(Z”)l < E 

for some time TI in ,!?(‘I. (The value is unconstrained if q is not nonfaulty 
through period i.) 

The Interactive 

Algorithm ICA: 

Convergence Algorithm is specified as follows. 

where 

A?$ = if lAP$l < A then A?: else 0. 

Thus, the correction A!) is the egocentric mean of the clock differences 
A:!, where A is a parameter to the algorithm that determines when a clock 
difference is “too large.” 

The proof that ICA achieves S 1  and S2, subject to A0 and A2, depends 
on 5 lemmas and on seven constraints on its parameters. The most inter- 
esting of the Lemmas are numbers 4 and 5 ,  which consider the contribution 
to the skew between nonfaulty processors p and q due to the differences 
they observe between their own clocks and that of processor r .  Lemma 4 
considers the case where r is nonfaulty, Lemma 5 the case where it is faulty. 
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Lemma 4. If the clock synchronization conditions S1 and S2 hold for i ,  
processors p ,  q, and T are nonfaulty through period i + 1, and T E S(')), then 

Ict)(T) + A:$ - [c f ) (T)  + A:;][ < 2 ( ~  t pS) + PA. 

Lemma 5. If the clock synchronization conditions S1 and S2 hold for i ,  
processors p and q are nonfaulty through period i + 1, and T E S('), then 

If there are n processors, of which t are faulty, the skew between non- 
faulty processors p and q in the i + 1st period is the mean of n - t terms 
derived from Lemma 4 and t terms derived from Lemma 5 ,  plus some cor- 
rection terms. More exactly, it is 

To maintain synchronization, this expression must be no greater than 6. 
Rearranging terms, this gives 
Constraint C6: 

which is the bound on the synchronization achieved. 

As noted, the proof that ICA achieves S 1  and S2 subject to  A0 and 
A2, requires that seven constraints, named CO to C6, on its parameters are 
satisfied. We have already seen C6; another is 
Constraint C4: 

P A 2 6 + E + 2 S. 

Synchronization can be achieved only if all seven constraints are satisfied 
simultaneously.' However, taking C4 with C6, it can be seen that a necessary 
condition is n > 3t. 

'The other five constraints are the following. CO: 0 5 t < n; C1: R 2 3 s ;  C2: S 2 E; 
C3: C 2 A; and C5: 6 2 60 + pR. 
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2.2 The Hybrid Fault Model and the Modified 
Algorithm 

Thambidurai and Park's fault model for distributed consensus distinguishes 
three fault modes: manifest faults are those that can be detected by every 
nonfaulty processor; symmetric faults deliver wrong rather than detectably 
bad values, but all nonfaulty processors receive the same values; arbitrary 
faults are completely unconstrained. Because clock synchronization is a 
different problem than consensus, we have to reinterpret this fault model for 
the present problem, while seeking to retain the plausibility of its motivation. 
For clock synchronization, communication between processors is limited to 
determination of the clock differences Ari, so the fault model needs to be 
expressed in these terms. 

In previous work extending the Oral Messages algorithm for consen- 
sus [9], it was found that symmetric faults were already dealt with, fortu- 
itously, by the ordinary algorithm-though additional analysis is required 
to reveal that fact-and that the key to operating under a hybrid fault 
model is to diagnose and deal specially with manifest faults. The same is 
true for ICA: we have to find a definition for symmetric faults that places 
them within the competency of the ordinary algorithm, and a suitable spe- 
cial treatment for manifest faults. The special treatment that is suitable for 
ICA, as it is for Oral Messages, is simply to exclude manifest-faulty values 
from further consideration. Since ICA operates by reading clock differences 
and averaging them, we can do this by setting any manifestly faulty read- 
ings of clock differences to zero. Although this is really an adjustment to 
the algorithm, it is more convenient to formalize it as an additional clause in 
its Assumption A2-though it must be realized that the implementation of 
the reading of clock differences must be specifically designed to satisfy this 
assumption. Methods of detecting manifest faults may include timeouts, 
checksums, or other similar tests. 

For symmetric faults, we want to capture the behavior of processors 
that are doing the wrong thing, but are doing it consistently. For consensus, 
this is specified by stating that each nonfaulty receiver gets the same value- 
though it may not be the right value. In clock synchronization, there is some 
uncertainty in reading clock differences, so we cannot require them to  be 
the same for different receivers: we can, however, require them to  be "close" 

l?. It turns out that A is the largest useful value for I'. I formalize these 
together-that is require IAgp ( i )  - AgrI (4  < I' for some suitable parameter 
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interpretations of manifest and symmetric faults in the following restatement 
of Assumption A2. 
Assumption A2 (for Hybrid Fault Model): If conditions S1 and 5’2 
hold for the i ’th period, and processor p is nonfaulty through period i ,  then 

period S(’) such that: 
for each other processor q, p obtains a value A q p  (4 during the synchronization 

e If q = p ,  then A p p  (4 = 0. 

e If q is nonfaulty through period i ,  then [A!;[ 5 S and 

Ic$)(T’ + Afi) - cf)(T’)I < E 

for some time T’ in S(’). 

e If q is manifest-faulty in period i ,  then Afi = 0.  

e If q is symmetric-faulty in period i ,  then 

/A!! - Afj1 < A 

for all nonfaulty processors r.  

e If q is arbitrary-faulty in period i ,  no constmints are placed on the 
value Aq (‘1 p .  

2.3 Analysis of the Modified Algorithm 

The main change in the analysis of the algorithm occurs in Lemma 5. 
Lemma 5 (Version for Hybrid Fault Model). If the clock synchro- 
nization conditions 5’1 and 5’2 hold for i ,  processors p and q are nonfaulty 
through period i + 1, and T E S(’), then 

e If processor T is manifest-faulty in period i, then 

(cF)(T) + A?; - [c!)(T) + A:;][ < 6 

e If processor T i s  symmetric-faulty in period i ,  then 

IcF)(T) + A?! - [c f ) (T)  + A?$I < 6 + A 



2.3. Analysis of the Modified Algorithm 11 

If processor T is arbitrary-faulty in period i, then 

IcF)(T) + A:; - [cf)(T) + A?,$[ < 6 + 2A. 

Proof: For manifest- and arbitrary-faulty T ,  we can write 

and the result follows on applying S 1  to the first term on the right hand side, 
and observing that the Algorithm ensures that the remaining two terms are 
zero for manifest-faulty T ,  and no larger than A for arbitrary-faulty r. For 
symmetric-faulty T ,  we use the inequality 

S1 ensures that the first term on the right hand side is no greater than 6; 
by expanding the definitions of A?; and A?; (in terms of A?; and A?;? 
respectively), and applying the constraint for symmetric-faulty processors 
from A2, we see that the second term is no larger than A ,  and the result 
follows. 0 

If there are a arbitrary, s symmetric, and m manifest faults, and we set 
t = a + s + m (i.e., t is the total number of faults), then the maximum clock 
skew between two nonfaulty processors in any point in the period following 
resynchronization is bounded by 

(k) [(n - t)(2[c + PSI + P A )  + a(6 + 2A) + ~ ( 6  + A) + ms] + P(R + E). 
To satisfy S1, this must be no greater than 6, so we obtain the following 
version of Constraint C6. 
Constraint C6 (for Hybrid Fault Model): 

It is easy to check that this can be satisfied simultaneously with C4 only if 
n > 3a + 29 + m. 
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2.4 Extensions to the Fault Model 

There are a number of useful extensions that can be made to the hybrid fault 
model. As presently formulated, a manifest-faulty processor must appear so 
to  all nonfaulty processors. Communications faults that cause just one or 
two processors to receive manifestly erroneous clock readings must, because 
of the asymmetry in observed behavior, be counted as arbitrary faults in one 
or more of the processors: thus a common and simple kind of fault seems 
to  be rather expensive to  tolerate. In our version of the Oral Messages 
algorithm for distributed consensus under the hybrid fault model [9], this 
does indeed seem to be the case (at least, in the presence of arbitrary and 
symmetric faults); for clock synchronization, however, these kinds of faults 
do not exact the same cost. I present two treatments: one widens the class 
of faults considered as symmetric, the other introduces link faults as a new 
fault mode. 

2.4.1 

Notice that it is possible to satisfy the symmetric-fault constraint /At; - 
A!;[ < A when one or both of A!! and A!! exceeds A (as might happen if 
processor q has lost synchronization). In this case, the ordinary algorithm 
will set one or both of At; or At; to  zero. If the algorithm still works in this 
case (and we have just seen that it does), then it will also work if either of 
A63 or At! had themselves been zero-as would happen if processor r was 
asymmetrically (or intermittently) manifest-faulty. We can add this case to 
the definition of the symmetric fault mode by changing the corresponding 
clause (i.e., the fourth bullet) of the hybrid version of Assumption A2 to  
read 

Extending the Symmetric Fault Mode 

, 

a If q is symmetric-faulty in period i, then either At; = 0 or A!; = 0 
or 

IAfJ - Afjl < A 
for all nonfaulty processors r .  

The only adjustment required to  accommodate this change is the addition 
of a new, and straightforward case in the proof of Lemma 5.  

This treatment reduces the cost of tolerating an asymmetrically 
manifest-faulty processor from that of the arbitrary to the symmetric fault 
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mode. However, it has the disadvantage of treating the afflicted processor as 
faulty and therefore fails to  discuss whether that processor can stay synchro- 
nized. This will be of interest if the physical source of the faulty behavior is 
in the communications links rather than in the processor itself. To provide 
a better treatment for faults in the communications links, it is necessary 
introduce a new fault mode explicitly for that case. 

2.4.2 Link Faults 

I will say that a link ( q , p )  is faulty if the value A!J can appear as if q were 
a manifest-faulty processor (i.e., the value can be 0). The strictest fault 
model would stipulate that the value should always appear manifest-faulty. 
However, the cost of tolerating this fault mode will be in the asymmetries 
between A!! and A!;, where ( q ,  r )  is a nonfaulty link, and the corresponding 
effects on the adjustments made by processors p and r .  This asymmetry is 
not increased if we allow faulty links to  be intermittent-that is to behave 
sometimes correctly and sometimes as a source of manifest faults. Thus, I 
introduce link faults to  the hybrid version of Assumption A2 by amending 
the second bullet ( q  nonfaulty) to  require that the link ( q , p )  is nonfaulty in 
period i, and adding the following the clause for the case where the link is 
faulty. 
Assumption A2 (extra clause for link faults): 

e If q is nonfaulty through period i, and ( q , p )  is link-faulty at period i ,  
then either At; = 0 or 

/A631 5 S 
and 

for some time T' in $'I. 

Analysis of these faults is undertaken in a modification to Lemma 4. 

Lemma 4 (Version for Link Faults). If the clock synchronization 
conditions S1 and S2 hold for i ,  processors p and q are nonfaulty through 
period i + 1, processor T is nonfaulty through period i, one or both of ( r , p )  
and ( r ,  q )  is link-faulty in period i, and T E di), then 



14 Chapter 2. The Algorithm and Its Analysis 

Proof: (Sketch; note, the result is true even if T is one of p or q.) If neither 
( ~ , p )  nor ( T , Q )  displays faulty behavior, the regular Lemma 4 applies and 
the result follows, provided 6 2 + pS + fa. This constraint is examined 
below. 

If both ( ~ , p )  and ( T , Q )  display faulty behavior, then the case of Lemma 
5 for manifest-faulty T applies and the result follows immediately. 

If exactly one of ( r , p )  and ( T ,  q )  displays faulty behavior, then using the 
arithmetic identity 

z - y = ( u -  y) - (v - .) + (v - w) - ( u  - w) 

we obtain 
Jcg)(T)  + A?; - [c f ) (T)  + A?j]l 

= Jcf)(T + A?j) - [ c f ) ( T )  t A?l] 
- (c t ) (T  + A?;) - [ c t ) (T)  + A?;]) 
+ c t ) (T  + A!%) - c!')(T) 
- (c, ( a i  ( T +  A?:) - c?)(T))l. 

Without loss of generality, suppose it is ( T ,  q )  that is faulty, so that A?; = 0. 
Making this substitution, rearranging terms, and canceling, we obtain 

Icf)(T) t A?; - [cy)(T)  + A:;][ 
- < p ( T )  - Ct)(T)I 

+ Icg)(T $. A?;) - [cg)(T)  + A?;]l 
t (c t ) (T  t A?;) - c?)(T)/ .  

By S1, the first term on the right hand side is no greater than 6. Using 
Lemmas numbered 1 and 2d from the formal verification of the classical 
ICA algorithm [17], the second term on the right hand side can be shown 
to be no greater than $A, and Lemma 3 from that verification shows that 
the final term is no greater then 6 + pS. The result follows. 0 

For two nonfaulty processors p and q, let I,, be the number of nonfaulty 
processors T such that one or both of ( ~ , p )  and ( T , Q )  is link-faulty (note 
that p or q can be such an T ) .  Then the worst-case clock skew between two 
nonfaulty processors at any point in the period following resynchronization 
is bounded by 

(:) [ (n  - a - s - rn - $) (a [€  + pS] t pa) 

+ a(6 + 2A) t s(6 t A) t 2,,6 t 7 7 4  t P(R t E). 
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If we then let I be the maximum over all p and q of l , ,  (so that I is at most 
the number of nonfaulty processors having one or more faulty “outgoing” 
links), define t = a + s + m + I, and again assume 6 2 E + pS + $A, this 
becomes 

which yields the following version of the Constraint C6. 
Constraint C6 (for Hybrid Fault Model with Link Faults): 

2(n - t + ; ) ( e  + p[S + 41) + (2a + s)A + np(R + E) 
n - t  6 2  

Taking this with Constraint C4, we can deduce that a necessary (though 
not sufficient) condition for the existence of a solution is 

12 > 3a+ 29 + m + 1. 

It remains to  discharge the constraint 6 > E -t pS + $A used above. This 
follows from the version of C6 just derived, because n - t 2 2 (otherwise we 
cannot discuss synchronization). 
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Formal Verification 

The real difficulty in proving correctness of ICA and its variants is not in 
the arithmetic manipulations performed in the proofs of Lemmas such as 4 
and 5 ,  but in making the whole argument hang together. This argument is a 
delicate web of interconnected constraints, assumptions, and lemmas, whose 
hypotheses must be stated very carefully. For example, Lemma 4 is required 
in the proof of S1, its own proof requires Assumption A2, A2 requires S1, 
and all are bound together in an induction. Furthermore, it is necessary to 
be careful about the exact durations of the periods in which a processor is 
assumed nonfaulty. The flaws in Lamport and Melliar-Smith’s proof of cor- 
rectness of ICA [6] were mostly in these details. The mechanically-checked 
formal verification of ICA that von Henke and I constructed in 1988 led us 
to detect and correct these flaws [17,18]. Our corrected proofs change some 
of the assumptions and the statements of the lemmas, and also eliminate the 
approximations used by Lamport and Melliar-Smith, yielding correct proofs 
that provide simple and exact bounds and that are easier to follow than the 
originals. 

The improved argument for correctness, and the improved understanding 
of that argument that derives from having undertaken formal verification, 
made it quite easy to see how to adjust matters to accommodate a hybrid 
fault model. Furthermore, although construction of the formal verification 
for the original algorithm was a significant effort (at the time, it was one of 
the hardest mechanically-checked verifications that had been performed’), 

‘It is still a formidable challenge to most theorem proving systems because of the 
extensive arithmetic reasoning that is required. Only systems with integrated decision 

17 
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subsequent tinkering has proved relatively inexpensive. Moreover, it is re- 
liable and safe-which modifications to an informal argument seldom are: 
a mechanized theorem prover brings the same implacable skepticism to its 
second and third (or hundredth) encounter with a given problem as to its 
first. 

Our formal verification of ICA has been adjusted several times, as new 
requirements or opportunities were discovered. For example, the original 
verification incorporated an assumption from Lamport and Melliar-Smith 
that the initial clock corrections C r )  are all zero. Later, when Liu and I were 
designing a circuit to read clock differences [ll], we realized that this was 
a very inconvenient constraint and wondered if it could be eliminated. We 
explored this possibility by simply eliminating the constraint from the formal 
specification and rerunning all the proofs (which takes about 20 minutes on a 
S P A R C ~ ) .  We found that the proofs of a few internal lemmas failed, but that 
they could be adjusted to use slightly different arguments without affecting 
the rest of the verification. 

Another adjustment to the verification derived from the discovery, made 
by Palumbo and Graham in measurements of a hardware implementation of 
the interactive convergence algorithm, that the observed worst-case skew is 
significantly better than that predicted by the standard Constraint C6 [15]. 
They showed that observation and theory could be brought into much closer 
agreement by using the fact that there is no error when a processor reads its 
own clock. The improved bound is easily incorporated into the formal veri- 
fication by noting that the constraint in Lemma 4 is halved when processor 
T is one of p or q. This allows the factor 2 in the first term of C6 to reduced 

. Because the parameters to the algorithm are interrelated, this 
adjustment also permits a reduction in the bound on A, which is significant 
for the second term in C6. Overall, these adjustments yield improvements 
of 10% to 25% in numerical estimates of the worst-case skew. More detail 
on these improvements is provided in Appendix A. 

Extending the formal verification of ICA to accommodate Palumbo and 
Graham’s improved bound required development of a body of lemmas con- 
cerning finite summations. Previously, it had only been necessary to split 
the summation over clock differences into two-according to  whether pro- 
cessor T is faulty or nonfaulty-and an ad-hoc treatment was adequate. For 

n-t-1 to 2- 

procedures for real and integer arithmetic stand any chance of completing the proof at 
reasonable cost. (The full proof has over 200 mechanically-checked lemmas.) It has been 
repeated just once: by Young [25], using the Boyer-Moore prover. 
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Palumbo and Graham's bound, it was necessary to split the summation fur- 
ther according to whether T is the same as one of p or q,  and it seemed better 
to develop a more general theory of summations. Availability of this general 
theory made it feasible to contemplate hybrid faults (where the summation 
needs to be further subdivided according to fault mode). 

For the hybrid algorithm, it was the work of a couple of hours to ad- 
just the formal specification and develop a mechanically-checked proof for 
the hybrid version of Lemma 5 (an excerpt is reproduced in Appendix B). 
However, a whole day was spent without success trying to carry through the 
full proof for the hybrid case (without link faults). Eventually, the source 
of the problem was found in an unexpected location: in the statement of 
Lemma 4 (which is unchanged from the classical case when link faults are 
not considered). Following Lamport and Melliar-Smith, the hypotheses to 
our version of this lemma require that processors p ,  q, and T are nonfaulty 
through period i+ 1. Because the lemma is concerned with the skew between 
processors p and q in the i + 1st period, these processors must indeed be 
nonfaulty in this period. However, the role of processor T is to provide its 
clock differences to processors p and q in the resynchronization that occurs 
at  the end of period i. Thus, it is only necessary that processor T should 
be nonfaulty through period i. With this adjustment, the hypotheses of the 
standard version of Lemma 4 coincide with those of the hybrid version of 
Lemma 5 and the full proof can be completed. The overly strong hypothesis 
in the original Lemma 4 concerning processor r did not affect verification of 
the classical algorithm because that makes no assumptions about the behav- 
ior of faulty processors (thus the condition of processor T is not mentioned 
in the hypotheses to  the original Lemma 5 ) .  The new algorithm and its 
verification have to consider the mode of failure of processor T at period i 
in Lemma 5 ,  and so Lemma 4 has to be adjusted accordingly. 

Our formal verification combines treatment of the hybrid fault model 
with the improved bound on clock skew due to [15] and verifies the following 
constraint on clock skew. 
Constraint C6: 

A 2 a + s  npR npC 
A + - + -  n - t  n - t '  

6 2 2(n - - "(c + p[S t 21) + - 
n - t  n - t  

The extension to link faults has not been formally verified, since this fault 
model requires a more substantial adjustment to the formal specification 
than was feasible in the time available. 



Chapter 4 

Conclusions 

The work presented here widens the fault model for clock synchronization to 
include three realistic fault modes-manifest , symmetric, and link faults-in 
addition to the arbitrary or Byzantine case. A simple adjustment to the In- 
teractive Convergence algorithm, and slightly more complicated adjustments 
to its analysis, yield a formally verified algorithm that performs well under 
each of these fault modes and their combinations. Among synchronization 
algorithms suitable for the architectures used in digital flight control, this 
algorithm seems to provide the most robust fault tolerance for a given level 
of redundancy. 

Although the main change needed to accommodate the hybrid fault 
model (without link faults) is in Lemma 5 ,  formal verification revealed the 
unexpected need to adjust the statement of Lemma 4 also. I consider it un- 
likely that this would have been discovered in an ordinary journal-style proof. 
As it happens, this adjustment has no further repercussions, but that is mere 
good fortune. This experience reinforces the conviction I have acquired from 
undertaking many other verifications: the intricate correctness arguments 
for fault-tolerant algorithms are often flawed (and sometimes the algorithms 
have bugs); only mechanically-checked formal verification seems able to pro- 
vide adequate assurance for these safety-critical algorithms. Small changes, 
even those with a convincing informal proof of correctness, should be viewed 
with suspicion and the full mechanically-checked verification should be re- 
peated following any change. (Recall that the statement of Lemma 4 had 
been satisfactory in previous formal verifications; it only became inadequate 
when hybrid faults were considered.) 

21 
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Fortunately, a formal specification and verification is a reusable intellec- 
tual resource, and it can be relatively inexpensive-as well as reliable and 
safe-to adjust a mechanically-checked verification to accommodate changed 
assumptions or requirements. I believe this is an inadequately recognized 
benefit of formal verification. Other benefits that are similarly underesti- 
mated by those who see mechanically-checked formal analysis only in terms 
of “proof of correctness” include: debugging (i.e., discovery of incorrectness), 
complete enumeration of assumptions, sharpened statements of assumptions 
and lemmas, streamlined arguments, and an enhanced understanding that 
can lead to further improvements. 

For future investigations, I suggest extending other clock synchroniza- 
tion algorithms in a similar manner to that described here. Shankar’s 
mechanically-checked formal verification [21,22] of Schneider’s general treat- 
ment [20] would be a good starting place for formal investigation of such ex- 
tensions (particularly with Miner’s formally verified extension to transient- 
recovery for the Welch-Lynch instantiation [13,24]). 

Another interesting topic for future investigation is the apparent diver- 
gence in fault-tolerance between algorithms for consensus and those for clock 
synchronization when hybrid fault models are considered. As we have seen, 
the hybrid interactive convergence algorithm for clock synchronization is 
able to  withstand a arbitrary, 9 symmetric, and m manifest faults simul- 
taneously, provided n, the number of processors satisfies n > 3a + 29 + m, 
whereas the T-round version of the hybrid Oral Messages algorithm for con- 
sensus requires n > 2a+29+ m+ T and a < T [9]. When only arbitrary faults 
are present, we have a = T and n > 3a, so both algorithms exhibit optimal 
fault tolerance. But when only manifest or symmetric faults are present, 
the hybrid Oral Messages algorithm appears suboptimal (in that additional 
rounds decrease the number of faults that can be tolerated). In fact, sep- 
arate analysis shows that the number of faults tolerated by hybrid Oral 
Messages is optimal when only manifest faults are present (n - 1 can be tol- 
erated, independently of the number of rounds), but that the suboptimality 
is real when only symmetric faults are present (if T > 0). Furthermore, the 
hybrid Oral Messages algorithm does not appear able to tolerate link faults, 
whereas hybrid interactive convergence does so inexpensively. It seems that 
the approximate nature of clock synchronization is helpful in these cases, 
and an interesting direction for future work is to examine whether the ap- 
proximate agreement version of distributed consensus [2] is better suited to 
the hybrid fault model than exact agreement. 
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Appendix A 

The Improved Bound on 
Synchronization Achieved 

The clock skew achieved by the Interactive Convergence Clock Synchro- 
nization Algorithm is shown (in the proof of the result known as Theorem 
1 [6,17,18]) to  be bounded by 

(i) [(n - t ) (2 [~  + PSI + p a )  + t (6  t 2A)]+ p(R t E). ( A 4  

In this expression, the term 2 [ ~  + pS] + pA comes (in the proof of the result 
known as Lemma 4) from considering the maximum differences that two 
nonfaulty processors p and q can form in their estimates of the clock value 
of another nonfaulty processor r .  Similarly, the term 6 t 2A comes (in 
the proof of the result known as Lemma 5 )  from considering the maximum 
differences that two nonfaulty processors p and q can form in their estimates 
of the clock value of a faulty processor T .  Since there are t faulty processors, 
and therefore n - t nonfaulty processors, the final bound is obtained by 
taking the mean of n - t copies of the first term, and t of the second. 

Notice that the explanation of the first term speaks of the differences in 
the estimates that two nonfaulty processors p and q form of the clock value 
of another nonfaulty processor r ;  since p and q themselves are nonfaulty 
processors, there must be one case among the n - t considered as T ranges 
over the nonfaulty processors where p = T ,  and another where q = r .  It 
seems reasonable that a processor reads its own clock value with zero error, 
and therefore that the constraint 2 [ ~  t pS] + pA can be tightened in the case 
where one of p or q equals r .  
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This is indeed the case: the bound in Lemma 4 is halved when one of p 
or q equals T .  (This result depends on more careful calculation, it does not 
require adjustment to the axioms.) Using this improved result, the bound 
on the overall skew becomes 

(:) [ (n  - t - 1 ) ( 2 [ c  + pS] + P A )  + t(6 + 2A)] + p(R + E). 

(Notice the factor n - t on the first term has changed to  n - t - 1 . )  This 
allows the constraint C6 on the value of 6, the maximum clock skew to 
change from 

to 

The result (A.2) also allows the bound on E, the maximum adjustment 
made by any clock, to be changed from C 2 A (this is the constraint C 3 )  
to C 2 ?A.  

The observation that the bounds on the maximum clock skew (6) and 
adjustment (E) in ICA can be improved in the manner just described is due 
to  Palumbo and Graham [15]. In their report, Palumbo and Graham also 
describe other adjustments to  the constraints on ICA: 

1. Their constraint C6 eliminates the small terms W p S  and 5 p C  

2 .  They change the constraint C 2  from S 2 C to S 2 2A 

3.  They change the constraint C 1  from R 2 3s to R 2 S + C. 

I have not attempted to  factor these three additional adjustments into 
the formal verification. The first of these is of little practical significance 
(because p is very small in any realistic implementation), and the elimina- 
tion of these terms from Palumbo and Graham’s proof rests on informal 
arguments that I do not see how to formalize. The second adjustment does 
not seem an improvement: we would like to  give implementers maximum 
freedom on the selection of S (the clock synchronization interval). Since 
C 2 h A  n (this is constraint C 3 ) ,  Palumbo and Graham’s version of C 2  
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more than doubles the minimum allowed value for S. The change in the 
constraint C1 is a straightforward consequence of the change to C2 and also 
seems regressive: it changes the minimum allowed value of R from 3C to 
2A + C. 

Despite these quibbles with their choice of minor constraints, the im- 
provement in the bound on maximum clock skew due to Palumbo and Gra- 
ham, as represented in our version by (A.3), is very significant. In the 
common case of TZ = 4 and no faults, it reduces the bound by 25 percent 
(the figures for five clocks and for six clocks are 20 percent and 16.6 percent, 
respectively). In the presence of a single fault, the new bound reduces the 
contribution of the first term in (A.l) by 33.3 percent, 25 percent, and 20 
percent, respectively, for the cases n = 4,5, and 6. In the presence of faults, 
the overall value of (A.l) is dominated by the contribution of the second 
term and this, in turn, is dominated by the choice of the parameter A. Now 
one of the constraints on A is C4: 

which, after combining with the original constraint C6 and neglecting small 
terms, yields 

3(n - t) 
n - 3t 

E. A 2  

Using (A.3), however, this constraint becomes 

3n - 3t - 2 
n - 3t 

€. A 2  

In the case of one faulty processor (t = l ) ,  this improved bound reduces A 
by 22.2 percent, 16.6 percent, and 13.3 percent, respectively, for the cases 
TZ = 4, 5, and 6, with corresponding reductions in the bound on the worst- 
case skew. 

The results of representative calculations are tabulated in Table A.l, 
which shows the worst-case skews for the cases of four, five, and six proces- 
sors, and with zero, and with one faulty processor. In each case, we give 
the result corresponding to the original constraint C6, that corresponding 
to the improved version (A.3) but with the original value of A, and that 
with the optimized value of A allowed by (A.3). The parameters used in 
constructing this table are those from SIFT [l] (S = 3.2msec., = 66.1psec., 
and p = 15 x 
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4 
4 
4 
5 
5 
5 
6 
6 
6 

Appendix A. The Improved Bound on Synchronization Achieved 

C6 t = O  t = l  
original 0.61 0.134 0.541 
improved 0.61 0.101 0.497 
optimized 0.47 0.101 0.404 
original 0.41 0.134 0.339 
improved 0.41 0.107 0.306 
optimized 0.34 0.107 0.271 
original 0.34 0.134 0.270 
improved 0.34 0.112 0.244 
optimized 0.29 0.112 0.224 

1 n I Constraint I A I Maximum skew 

Table A. l :  Improvements in Maximum Clock Skew 



Appendix B 

A Fragment of the Formal 
Specification and 
Verification 

As an illustrative fragment of the text submitted to the EHDM formal ver- 
ification system, the statement and proof of the manifest-faulty case of the 
hybrid version of Lemma 5 is reproduced below. The specification has been 
prettyprinted by EHDM. The text of the full verification is 110 pages long. 

The list following the FROM keyword in the PROVE declaration enumer- 
ates the lemmas, axioms, and definitions to be used in the proof; the material 
in braces indicates substitutions to be made for quantified variables. Given 
this information, EHDM generates a ground formula by Skolemization and 
substitution for free variables, and then applies a decision procedure for a 
combination of theories including real and integer arithmetic and proposi- 
tional calculus. The whole process takes only a couple of seconds. 
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lemmdhybrid : MODULE 

USING lemma3-hybrid, lemma4, lemma5, 
algorithm-hybrid, algorithm, clockprops 

THEORY 
p ,  q ,  r : VAR proc 
T : VAR clocktime 
i , j  : VAR period 
lemma5-manifest : LEMMA 

SlC(P, 9,  
A S2(P,i) 

A S 2 ( q , i )  
A nonfaulty(p, i t 1) 

A nonfaulty(q, i + 1) 
A fault-type(r, i) = manifest A T E S(') 

3 J C t ) ( T )  + A g  - (cF)(T)  + A!J)l 5 6 

lemma5-man$est-proof : PROVE lemrna5-rnanifest 
FROM 
s1 c, 
inRS, 
A2-manifest { q  t T } ,  

Ahmanifest { p  t q ,  q t r } ,  

nonfx, nonfx { p  t q } ,  
abs-ax0 

- ( i )  - ( i )  
ATP,  AT 9 ,  

... 
END lemma5-hybrid 
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